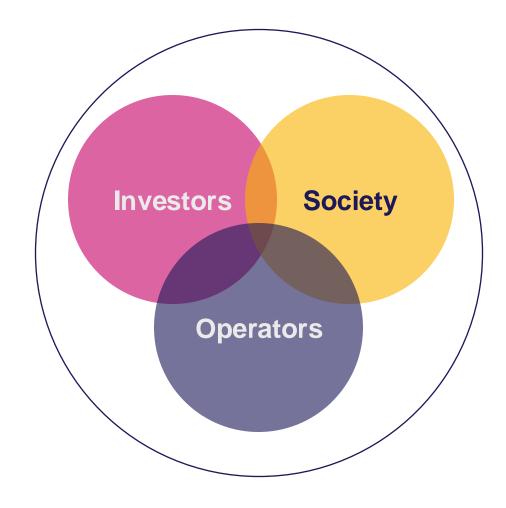


Introduction to

Data-driven products for infrastructure investment

23rd October 2024



Agenda

1. Who we are

- 2. A pivotal moment of change in the infrastructure sector
- Will the current regulatory model be fit for purpose?
- 4. The Vallorii approach and your guidance

The Vallorii Mission

The world needs critical infrastructure that supports economic prosperity, social equity, and a sustainable environment.

We help investors, utilities, and regulators understand investment needs, risks, and returns.

Data-driven intelligence for sustainable and inclusive infrastructure investments.

We are building a team with AI, big data, economics and financial analytics

Sandy Arbuthnott Oxford/LBS, ex-Bain, engineering, sustainability & program management

Lennart Baumgärtner Oxford, ex-McKinsey, complexity economics & physics

Anita Bharucha
Cambridge, ex-Whitehall,
public sector NED, ops
leadership

Cassian Burger Bocconi/Cass, exinvestment banking

Jorgé Cardenas KIT, ex-Quantum Black, Al product leader

Cassandra Etter-Wenzel
Oxford, ex-OECD,
regulatory specialist

Dieter Helm NED, Oxford Prof of Economic Policy

Cameron Hepburn
NED, Oxford Prof of
Environmental Economics

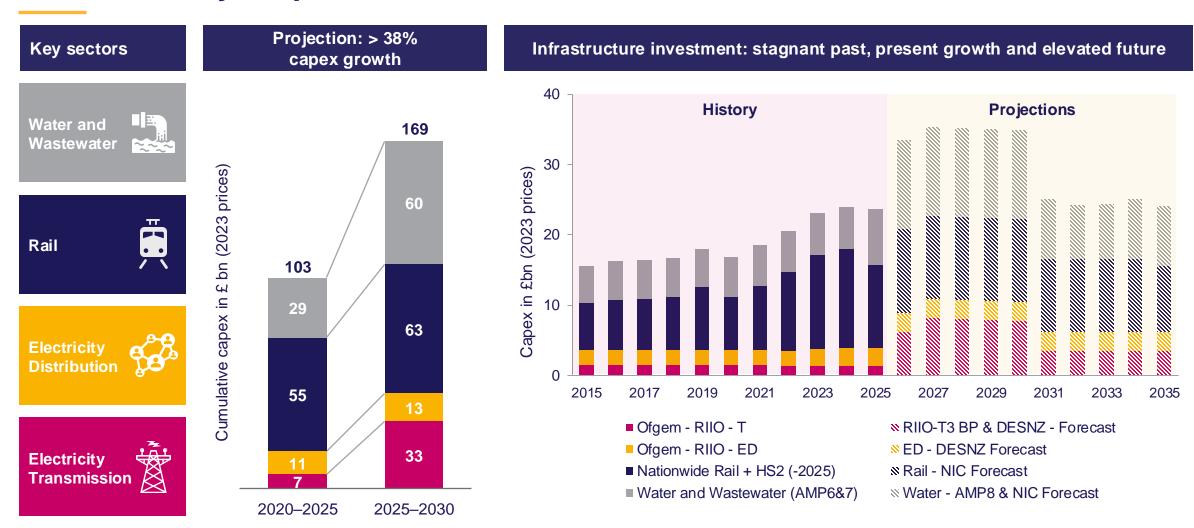
Ranjita Rajan NED, start-up leadership, PE and sustainability expert

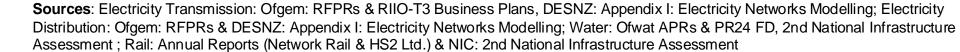
Robert Ritz
Cambridge/Ofgem, exVivid/McKinsey,
financial economics

Jennifer Vaughan
Order from chaos

Henry Tian LSE, Queens, ex-McKinsey data scientist

Fit-for-purpose infrastructure must be based on fit-for-purpose economics, data and models




Agenda

- 1. Who we are
- 2. A pivotal moment of change in the infrastructure sector
- Will the current regulatory model be fit for purpose?
- 4. The Vallorii approach and your guidance

Capex in key infrastructure sectors is projected to rise more than 38% over the next five-year period

But there is limited capacity for debt with exhausted balance sheets – the UK water sector provides an example

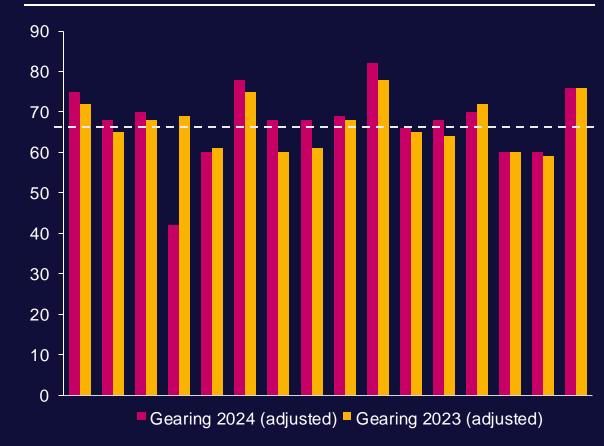
 Total net debt (adj.) of regulated companies in 2024:

£69 billion

 Total regulatory capital value of regulated companies in 2024:

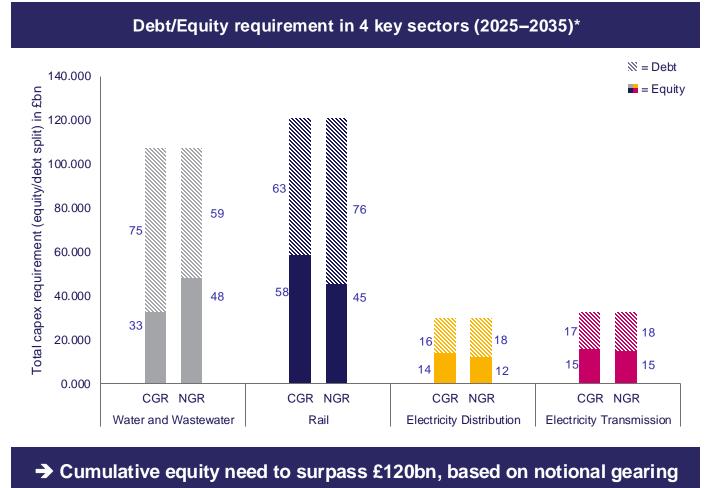
£99 billion

 Gearing ratio across regulated companies in 2024: 70%


• Low: Portsmouth Water (42%)

• Mid: Severn Treat Water (59%)

• High: Thames Water (81%)


Source: Annual Performance Reports (Ofwat regulated companies)

Current Gearing ratios – companies regulated by Ofwat (%)

So equity must do some heavy lifting – total equity need is estimated at more than £120bn over the next decade

Key sectors	Current Gearing Ratio	Notional Gearing Ratio	
Water and Wastewater	70%	55%	
Rail	52%	63%	
Electricity Distribution	53%	60%	
Electricity Transmission	52%	55%	

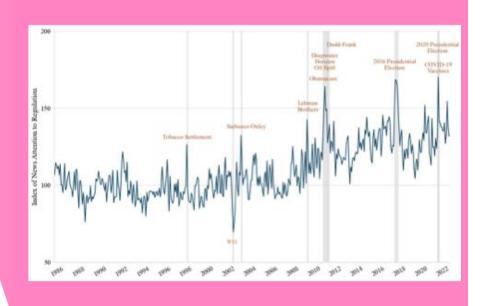
Sources: Ofgem: Regulatory Financial Performance Reports; Ofwat: Annual Performance Reports; ORR: Annual Efficiency and Finance Assessment of Network Rail; HS2: Annual Report 2024

^{*} Equity need calculated based on notional (NGR) and current (CGR) gearing ratios

But is the UK regulated infrastructure investable? Equity investors need a fine-grained understanding of the risks

Common risks, typically accounted for in today's risk analysis

Elevated and new types of risks, often underrepresented in today's risk analysis

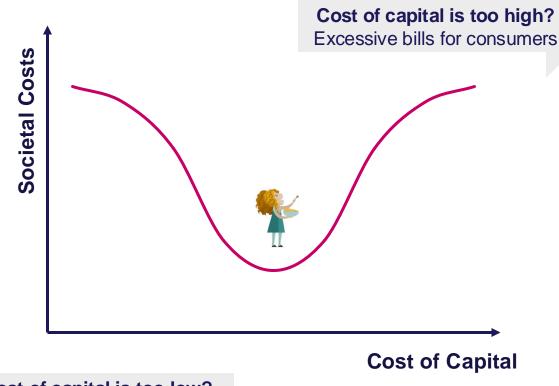


Focus using AI and advanced analytics

- Construction/development risks
- Operational risk
- Interest rate and financial risks
- Currency and market risks
- Counterparty risks
- Regulatory/political risks
- Geopolitical risks
- Natural disaster and climate change risk
- Terror-related risks
- Cyber risks

Case example:

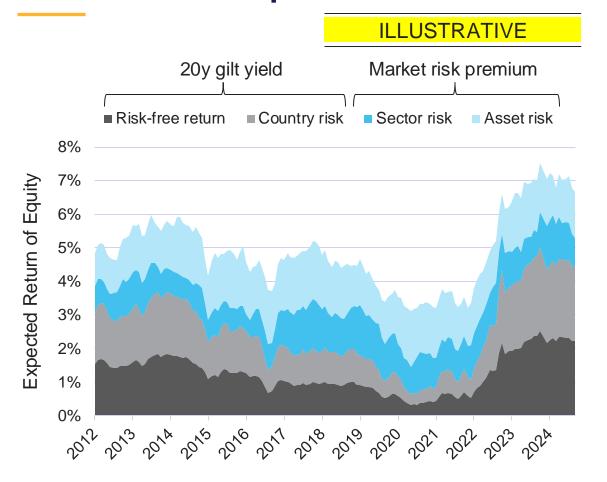
US media shows increasing attention to regulation

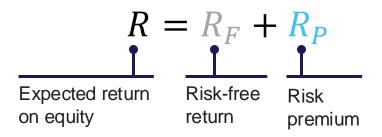

Sources: Federal Reserve Bank of St, Louis, George Washington University, Vallorii team

Agenda

- Who we are
- 2. A pivotal moment of change in the infrastructure sector
- Will the current regulatory model be fit for purpose?
- 4. The Vallorii approach and your guidance

From a societal perspective, we want regulators to steer us to the 'Goldilocks' cost of capital that minimises net costs to society


Increasing the return on the 2025-2030 capex across the 4 key sectors by 1% results in additional costs to UK consumers of:


~£230m/year

Cost of capital is too low?
Under-investment or bail-outs

The Goldilocks cost of equity can be determined by the risk-free rate and several risk premia

- Q1 What is the risk-free return?
- What are the underlying risks? (Country, Sector, Asset, ...)
- What is a fair compensation for those risks?

The regulatory framework needs the right incentives for investability and operational excellence

Risk model

Risk assessment

Return compensation **CAPM** is currently used for both risk assessment and compensation

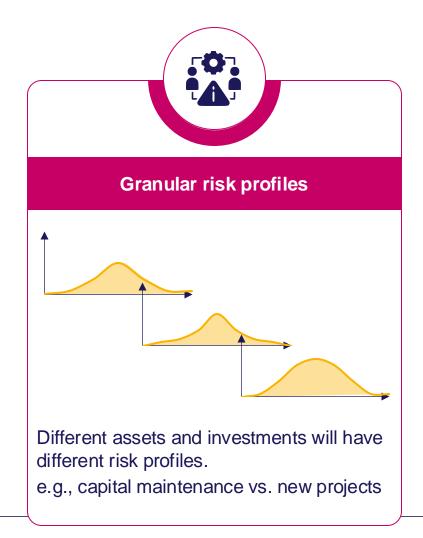
Application of risk model

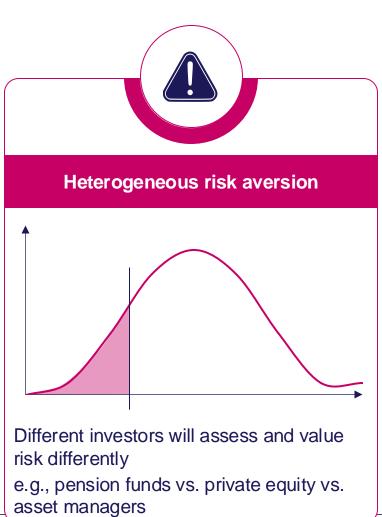
Assets

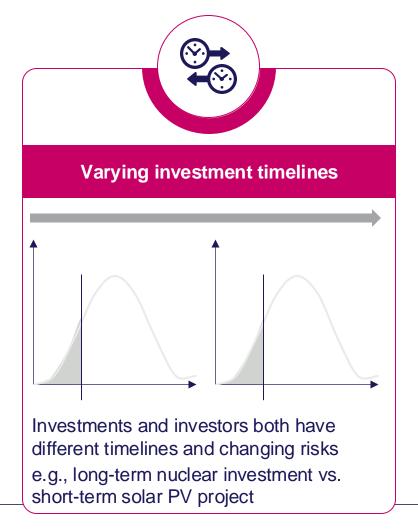
Investors

Timeline

No differentiation between different assets or investor (risk) preferences


In-period assessment of CoC


Out-of-period assessment of CoC methods


What incentives are given by...

- ... a CoD that is too high and CoE that is too low?
- ... applying a wrong CoC to the RAB vs. the true CAPEX?
- ... a single CoC that is applied to multiple investments with different risk profiles?
- ... a single CoC is applied over the lifetime of an asset?

CAPM (Sharpe, 1964) is a key intellectual tool to find Goldilocks... We can now also bring to bear large data sets and novel granular methods

Risk-return modelling:

There are a number of different approaches to estimate the cost of equity

		Advantages	Disadvantages		
	САРМ	Simple to implement, widely established benchmark	 Well-known shortcomings in underlying assumptions and limited ability to explain asset returns 		
Financial market	GARCH modelling (Robertson)	 Explanatory power typically outperforms CAPM Captures time-varying/cyclical nature of beta estimates 	 Significantly more technical than other CoC approaches Unclear to what extent GARCH is simply picking up CAPM model misspecification 		
	Multi-factor model (Fama-French)	 Based on granular company-level risk factors Explanatory power for asset pricing "anomalies" backed by finance literature 	 More complex to implement than CAPM, including access to data Unclear to what extent MFM is simply picking up CAPM model misspecification 		
	Dividend discount model (Gordon)	 Simple and well-established finance theory Explicitly forward-looking based on market expectations 	 Very sensitive to modelling assumptions Less suited to estimating CoD than CAPM 		
	Debt risk premium	Relatively innovative in terms of application to regulation	 Highly sensitive to modelling assumptions By design yields bounds rather than point estimates Limited practical experience in implementation 		
	Market-to-asset ratio (MAR)	 EV/RAB is widely followed by infrastructure specialists Clear theoretical foundation that directly captures regulatory regime via the RAB, unlike other approaches 	 Known to usually have weak predictive power Unclear how to directly translate MAR into a CoC estimate 		
Cash flow	Discounted cash flow	 Clear theoretical foundation at the company level Explicitly forward-looking 	 Highly sensitive to modelling assumptions including growth rates Sensitive to unknown price of risk aversion 		
	Real options valuation	 Clear theoretical foundation as financial instrument Explicitly forward-looking 	 Highly sensitive to modelling assumptions including growth rates Complex implementation that requires modern mathematical tools 		
Insurance	Default probability	Widely used in the insurance and banking industry Existing regulatory standard in the financial sector	 Unclear how to apply to long-term infrastructure investments Sensitive to unknown price of risk aversion 		

Risk-return modelling:

Taking CAPM into regulatory practice relies on strong assumptions

Explicit assumptions

- Mean-variance preferences
- Normal return distributions
- Risk-free rate for borrowing and lending
- Well-diversified, optimizing, investors
- Representative market portfolio

Implicit assumptions

- No market inefficiencies.
- No environmental externalities
- No system coordination

- No regulatory failure or political uncertainty
- No structural change on radical uncertainty

Regulatory Practice

- Single business-wide WACC
- Single model to estimate WACC
- Constant β

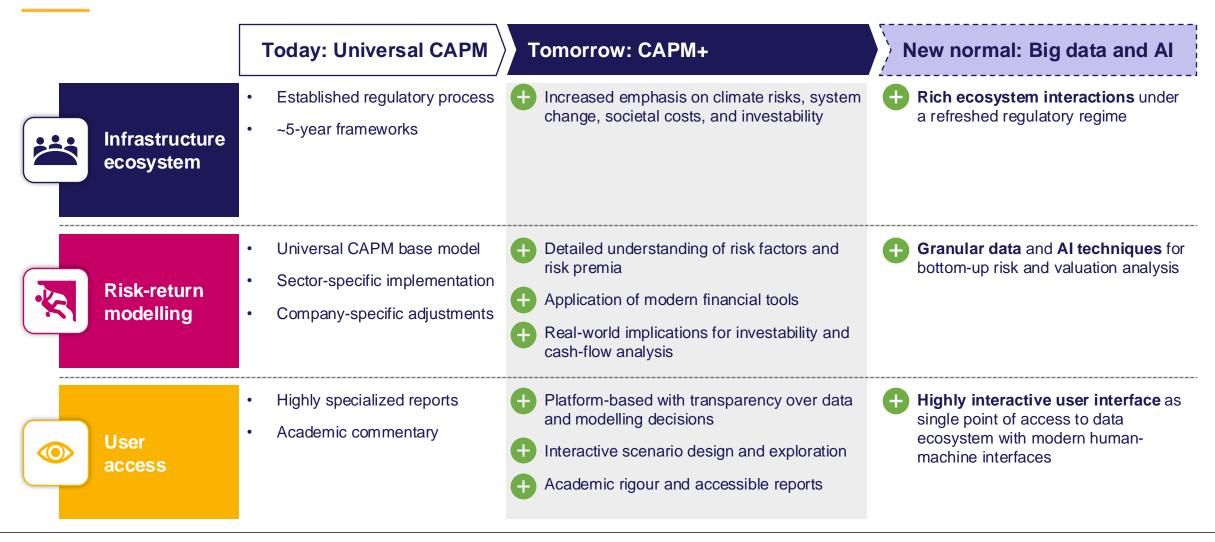
- Notional gearing level
- Constant WACC over regulatory period

No market failure

Static regulation

FOR DISCUSSION

A balanced set of criteria can be used to evaluate modelling approaches

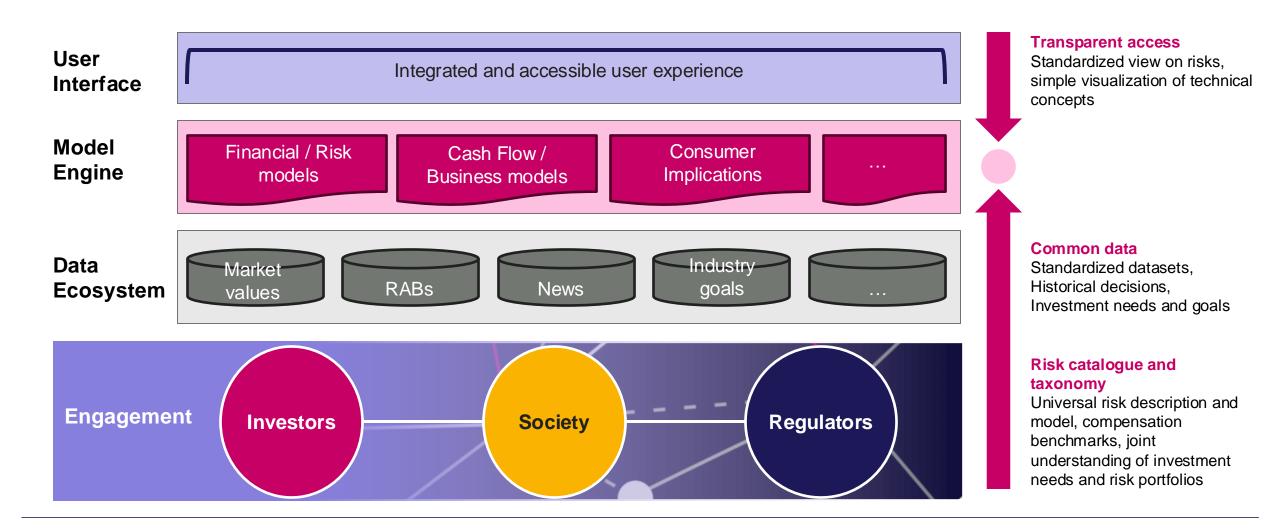

Criterion			D	escription	Most important to?
1 IMPLEMENTABLE	₹ <u>₹</u>	Empirically implementable	•	Readily usable by stakeholders and based on widely available data	Investors, regulators, utilities
2 REPRESENTATIVE		(A) Realities of regulatory framework	•	Represents how regulation shapes returns and risks, with mandates on net zero and social objectives	Regulators, utilities, society
		(B) Realities of capital markets	•	Captures investor concerns such as political risk and institutional factors such as limited diversification	Investors, utilities
3 DEFENSIBLE		(A) Theoretically defensible	•	Represents economic and financial mechanisms that have plausible causal interpretations	Regulators, society
	00	(B) Empirically defensible	•	Can be implemented with limited user discretion and yields results that are sufficiently robust and stable	Investors, utilities, regulators

Agenda

- Who we are
- 2. A pivotal moment of change in the infrastructure sector
- Will the current regulatory model be fit for purpose?
- 4. The Vallorii approach and your guidance

We will advance risk-return modelling using modern data and financial tools, and develop an interactive and transparent user platform

Model interaction:


Interactive and intuitive user interface

Change model **Company Profile** Model preferences preferences, scenarios, ILLUSTRATIVE **Example Company plc** view benchmarks and B Model switch assets ✓ CAPM ~ ☐ Multi-Factor Edit Risk-Free rate scenari Cost of Equity, in % Analyse forward-☐ GARCH looking projections, 9.0% ☐ Dividend growth 8.0% conditional on different 7.0% input assumptions, Risk-free rate 6.0% such as risk-free rates Assets 5.0% ✓ 20-year guild yield View historic data. or stock prices ☐ 10-year guild yield 4.0% including historic cost of 2.0% equity estimates, risk-Market Return 1.0% free rates and risk premia ✓ UBS Yearbook 2024 ☐ FTSE 100 Edit Stock Price scenario Stock price scenarios, in £ Make changes to 1400 Beta-estimation scenarios and update National Grid plc Select modelling 1300 ✓ OLS conditional forward-1200 preferences or compare ☐ GARCH looking projections 1100 different alternatives ✓ Relevered 1000 ☐ Unlevered 900

Model interaction:

Vallorii's approach is based on an accessible data ecosystem and interface

